A note on Jones’ function $K$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a $k$-extension of the Nielsen's $beta$-Function

Motivated by the $k$-digamma function, we introduce a $k$-extension of the Nielsen's $beta$-function, and further study some properties and inequalities of the new function.

متن کامل

A note on [k, l]-sparse graphs

In this note we provide a Henneberg-type constructive characterization theorem of [k, l]-sparse graphs, that is, the graphs for which the number of induced edges in any subset X of nodes is at most k|X| − l. We consider the case 0 ≤ l ≤ k.

متن کامل

A note on k-shortest paths problem

It is well-known that in a directed graph, if deleting any edge will not affect the shortest distance between two specific vertices s and t, then there are two edge-disjoint paths from s to t and both of them are shortest paths. In this paper, we generalize this to shortest k edge-disjoint s-t paths for any positive integer k.

متن کامل

A note on α-drawable k-trees

We study the problem of realizing a given graph as an α-complex of a set of points in the plane. We study the realizability problem for trees and 2-trees. In the case of 2-trees, we confine our attention to the realizability of graphs as the α-complex minus faces of dimension two; in other words, realizability of the graph in terms of the 1-skeleton of the α-complex of the point set. We obtain ...

متن کامل

A note on k-placeable graphs

Let G be a graph of order n. We prove that if the size of G is less than or equal to n − 2(k − 1) then the complete graph Kn contains k edge-disjoint copies of G. The case when k = 2 is the well known theorem of Sauer and Spencer 1978.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0367946-x